Hermite-Hadamard Type Inequalities for MφA-Convex Functions

Authors

  • İmdat İşcan Department of Mathematics, University of Giresun, Giresun, Turkey
  • Mehmet Kunt Department of Mathematics, University of Karadeniz Technical, Trabzon, Turkey
  • Sercan Turhan Department of Mathematics, University of Giresun, Giresun, Turkey
Abstract:

This article deals with the different classes of convexity and generalizations. Firstly, we reveal the new generalization of the definition of convexity that can reduce many order of convexity. We have showed features of algebra for this new convex function. Then after we have constituted Hermite-Hadamard type inequalities for this class of functions. Finally the identity has been revealed for its by us and by using this identity, then theorems and corollaries have been obtained.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Fractional Hermite-Hadamard type inequalities for n-times log-convex functions

In this paper, we establish some Hermite-Hadamard type inequalities for function whose n-th derivatives are logarithmically convex by using Riemann-Liouville integral operator.

full text

Hermite-Hadamard inequalities for $mathbb{B}$-convex and $mathbb{B}^{-1}$-convex functions

Hermite-Hadamard inequality is one of the fundamental applications of convex functions in Theory of Inequality. In this paper, Hermite-Hadamard inequalities for $mathbb{B}$-convex and $mathbb{B}^{-1}$-convex functions are proven.

full text

Some Hermite-Hadamard Type Inequalities for Harmonically s-Convex Functions

We establish some estimates of the right-hand side of Hermite-Hadamard type inequalities for functions whose derivatives absolute values are harmonically s-convex. Several Hermite-Hadamard type inequalities for products of two harmonically s-convex functions are also considered.

full text

Hermite-hadamard-type Inequalities for Increasing Convex-along-rays Functions

Some inequalities of Hermite-Hadamard type for increasing convexalong-rays functions are given. Examples for particular domains including triangles, squares, and the part of the unit disk in the first quadrant are also presented.

full text

Approximate Hermite––hadamard Type Inequalities for Approximately Convex Functions

In this paper, approximate lower and upper Hermite–Hadamard type inequalities are obtained for functions that are approximately convex with respect to a given Chebyshev system. Mathematics subject classification (2010): Primary 39B22, 39B12.

full text

Hermite-hadamard-type Inequalities for Generalized Convex Functions

The aim of the present paper is to extend the classical Hermite-Hadamard inequality to the case when the convexity notion is induced by a Chebyshev system.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 10  issue 1 (WINTER)

pages  57- 75

publication date 2020-03-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023